

European Commission

Executive Agency for Small &

Medium-sized Enterprises

(EASME)

Project ID 666438 Project duration: Apr 2015 – Apr 2017

H2020 EASME http://www.doremir.com

Polyfoni–X–Score

by DoReMIR Music Research AB

Document Identification

Deliverable

ID:
D3.1

Deliverable

title:
Cross platform framework selection report

Release number/date: V1 / 14.10.2015
Checked and released by: Bengt Lidgard

Key Information from "Description of Work" (from the Contract)

Deliverable Description Task 3.1: Cross platform framework selection (lead: DMIR) To enable the

multitude of possible applications that may come from the requirements phase,

it is necessary to develop a new flexible platform that is easy to adapt to the

specific needs of various user groups. The task involves defining the core

architecture, building blocks and methodologies to be used during the

forthcoming development. Several cross platform mobile application

development environments (such as Phonegap, Appcelerator, Xamarin, Appear

IQ) will be reviewed, with the goal to achieve the best possible user experience

whilst preserving platform flexibility and independency.

Dissemination Level PU = Public

Deliverable Type R = Report

Original due date

(month number/date)

Month 05 / 28.08.2015

Authorship & reviewer Information

Editor (person/ partner): Sven Emtell, DoReMIR

Partners contributing

Reviewed by (person/

partner)

Bengt Lidgard, DoReMIR

http://www.doremir.com/

 DoReMIR Music Research AB Page 2 of 15

Release History

Release

number

Date issued Milestone* Release description /changes made

0.1 TOC

approved

0.5 05.10.2015 Intermediate

approved

first internal release

0.8 ER proposed changes based on reviewer’s feedback

1.0 14.10.2015 ER released final version for approval by Coordinator before release to

the EC

* The project uses a multi-stage internal review and release process, with defined milestones.

Milestone names include abbreviations/terms as follows:

 TOC: Table of Contents (describes planned contents of different sections)

 Intermediate: Document is approximately 50% complete – review checkpoint

 ER: External Release (i.e. to commission and reviewers);

 proposed: Document author submit for internal review

 revised: Document author produce new version in response to comments

 approved: Internal project reviewer accept the document

 DoReMIR Music Research AB Page 3 of 15

Table of Contents

Release History ... 2
Table of Contents .. 3
1 Executive Summary .. 4
2 Background ... 5
3 Requirements .. 6
4 Cross platform ... 7

4.1 Prioritized Platforms .. 7
4.2 Native applications ... 7

4.2.1 Platforms ... 7
4.3 Native cross platform tools .. 8

4.3.1 Xamarin... 8
4.3.2 Unity ... 8
4.3.3 Qt .. 8
4.3.4 Appcelerator / Titanium .. 8
4.3.5 React Native .. 9

4.4 Web and Hybrid applications ... 9
4.4.1 Platforms ... 9
4.4.2 Graphics .. 10
4.4.3 Audio and MIDI .. 10

4.5 Hybrid cross platform tools.. 10
4.5.1 Apache Cordova / PhoneGap .. 10
4.5.2 Meteor ... 10

5 Local vs Cloud functionality ... 12
5.1 Why local? ... 12
5.2 Why cloud? .. 12
5.3 What to deploy in the cloud ... 12

6 Look and feel .. 13
7 Table of functionality .. 14
8 Conclusion .. 15

 DoReMIR Music Research AB Page 4 of 15

1 Executive Summary

This report is the outcome of an investigation with the goal to find a cross platform framework. The

framework should be suitable for future applications to be developed by DoReMIR and also with

DoReMIRs legacy and knowledge in mind.

The result of the investigation is that DoReMIR should try developing Web apps for Mac OS X and

Windows and Hybrid apps (web technology inside a native container) for mobile devices.

 DoReMIR Music Research AB Page 5 of 15

2 Background

The objective of WP3 is to develop a cross platform application (app).

The requirements of such an app are defined as part of WP1 and described in the report D1.2 -

"System technical and functional specifications".

This report describes the results of trying to select a cross platform framework meeting these

requirements.

 DoReMIR Music Research AB Page 6 of 15

3 Requirements

The report D1.2 requests that the applications to be developed in WP3 should run on a number of

different platforms. As a consequence of this the main objective has been to find a cross platform

framework which fulfills also the rest of the requirements from D1.2.

Here is a reworked list of these requirements:

 Audio and MIDI support

 Great User Interface

 Printing

 Sharing

 DAW Export

 Musical Intelligence

 Offline support

 Multiple users working in the same document

Of these, the "Audio and MIDI support" together with "Great User Interface" are the most important.

 DoReMIR Music Research AB Page 7 of 15

4 Cross platform

The main incentive for cross platform development is to reduce development costs. Cross platform

development often comes with drawbacks regarding "look and feel" and "speed" due to platforms

indifferences.

Nevertheless, our goal is to find a suitable cross platform solution where these drawbacks are not

threatening usability.

4.1 Prioritized Platforms

Here is a list of prioritized platforms (highest priority first) according to the report D1.2 - "System

technical and functional specifications".

1. iOS Tablet (iPad) - Native or Hybrid

2. Android Tablet - Native or Hybrid

3. Windows - Native or Web

4. Mac OS X - Native or Web

5. iOS Phone (iPhone) - Native or Hybrid, possibly with limited featureset

6. Android Phone - Native or Hybrid, possibly with limited featureset

7. Chrome OS (Chromebook) - Web or Hybrid

For each platform, implementation options are listed after the dash sign ("-").

The terms "Native", " Hybrid", and "Web" are described in the coming chapters.

4.2 Native applications

A "Native" application is compiled for a specific platform. On Chrome OS the "Native" concept is not

useful since it only runs web applications.

4.2.1 Platforms

4.2.1.1 iOS

Traditionally, native iOS development is made using Objective C or Swift where the code is then

compiled for the platform. The last years a number of new tools have emerged where you write code

in other languages and the code is later (translated and) compiled for the platform.

4.2.1.2 Android

The usual way to develop for Android is to write Java code which is compiled into byte code run in

the Dalvik VM. Here we refer to this as "Native" although it is actually not code compiled for the

platform.

N.B. Parts of an Android app can be implemented using native code languages such as C and C++, see

https://developer.android.com/tools/sdk/ndk/index.html

4.2.1.3 Windows

A number of different development tools and computer languages can be used to produce compiled

code for Windows.

 DoReMIR Music Research AB Page 8 of 15

4.2.1.4 Mac OS X

A number of different development tools and computer languages can be used to produce compiled

code for Mac OS X.

4.2.1.5 Chrome OS

Only web applications can be run on Chrome OS, but they can contain compiled parts, see

https://developer.chrome.com/native-client/overview

4.3 Native cross platform tools

By "Native cross platform tools" we mean tools that can produce Native applications for a number of

platforms. In 6.3.x you can find some of the most popular cross platform tools according to Vision

Mobile's "Cross-Platform Tools 2015", http://www.visionmobile.com/product/cross-platform-tools-

2015/: Xamarin, Unity, Qt, and Appcelerator/Titanium. You will also find the young challenger React

Native.

These tools excel when you write a fully native app. It is possible to embed a Web View running a

Web app in some of these tools, but if that is the objective, the tools listed in chapter 6.4 are better

alternatives.

NOTE:

The most popular Cross-Platform Tool according to the Vison Mobile report is PhoneGap / Apache

Cordova, but in this report it is listed as a tool for Hybrid app development, see chapter 6.4.

4.3.1 Xamarin

Xamarin can be used to build native iOS, Android and Windows Store apps. Code can also be shared

between iOS and Mac OS X apps. The development language is C#, see http://xamarin.com.

4.3.2 Unity

Unity is claimed to be "The best development platform for creating games". It supports the many

needs of game development companies with features as multi-player interaction, recording and replays

(to make others watch your playing), community, advertisements etc. Unity can be used for non-game

apps too but where it really excels is for apps having extensive use of 2D (two-dimensional) and 3D

(three-dimensional) graphics.

Examples of non-game apps developed using Unity are physics simulations and virtual museums.

Another interesting example is Physynth which is based on Unity's physics simulators,

http://simiansquared.com/physynth/.

Here is a report on development of non-game apps in Unity, https://medium.com/@raquezha/unity-3d-

not-just-games-aef911e3314c

See http://unity3d.com/unity for more info on Unity.

4.3.3 Qt

Qt is a framework for creating cross platforms apps. The main language used is C++, but other

languages can also be used via language bindings. Qt also has a proprietary declarative scripting

language called QML. See http://www.qt.io.

4.3.4 Appcelerator / Titanium

Using Appcelerator and it's Open Source SDK Titanium you can build native apps on iOS and

Android. The language used is JavaScript. See http://www.appcelerator.com.

 DoReMIR Music Research AB Page 9 of 15

4.3.5 React Native

React Native is a Facebook initiative letting you build native apps on iOS and Android. All code is

written in JavaScript. React Native was released in march 2015 so it hasn't been out for long. See

https://facebook.github.io/react-native/.

4.4 Web and Hybrid applications

A Web application is built using HTML, JavaScript, and CSS and runs in a web browser. A Web

application is inherently cross platform since web browsers exist on most platforms.

A web browser (and the Web apps running in it) has limited access to the device/computer it is

running on. A Web app may need access to the camera, the microphone, the disk drive etc but it is not

obvious that the Web app is entitled to access them. Sometimes web technology makes it possible to

directly access the device, but sometimes it is necessary to run the Web application in a web view

inside a Native container which has the appropriate access rights. A Web app running in a web view

inside a Native app, we call a Hybrid app.

There may be other reasons to make parts of a Web app native too. Examples are introductory screens,

login screen etc.

4.4.1 Platforms

4.4.1.1 iOS

The usual way to deploy apps on iOS is via the App Store. To accomplish this for a web app, it can be

run in a Web View inside a native app. Apache Cordova/Phonegap makes it possible to access native

device functionality such as the camera from JavaScript.

4.4.1.2 Android

Just as on iOS, a web app can be run inside of a native container on Android. Apache

Cordova/Phonegap makes it possible to access native device functionality such as the camera from

JavaScript.

4.4.1.3 Windows

Web apps are usually run directly in a Web browser on Windows. Nevertheless Apache

Cordova/Phonegap makes it possible to access native device functionality such as the camera from

JavaScript. Windows 10 also introduces the possibility to create a Windows app from a Web app, see

https://blogs.windows.com/buildingapps/2015/03/02/a-first-look-at-the-windows-10-universal-app-

platform/

4.4.1.4 Mac OS X

To deploy a web app on the Mac App Store, the app could be run inside a web view of a native app in

a similar way as on iOS. On Mac OS X there are less reasons to do this though so it is more common

to just run the web app "as is" in a Web Browser.

4.4.1.5 Chrome OS

Only web apps can be run on Chrome OS, but they can contain compiled parts, see

https://developer.chrome.com/native-client/overview

Chrome OS also makes it possible to package a Web app to make it look more like a desktop app

running in it's own window etc.

 DoReMIR Music Research AB Page 10 of 15

4.4.2 Graphics

Usability is extremely important. For a web app to be useful, there must be almost no difference in

"look and feel" from a native app. This is especially important on touch interfaces like tablets and

phones. Computers and devices are getting faster for every new hardware release and at the same time

improvements in software are made. One example is that the WKWebView introduced in iOS 8 and

Mac OS X 10 is considerably faster than its predecessors UIWebView (iOS) and WebView (Mac OS

X). With iOS 9 Apple introduced SFSafariViewController, which can give an even better user

experience sharing cookies, autofill etc.

There are a number of UI frameworks for mobile web apps and they are usually part of or easily

integrated with the web frameworks mentioned in 6.5

4.4.3 Audio and MIDI

WebAudio and WebMIDI are exciting technologies bringing audio and MIDI to web apps. They seem

to have a good feature set but questions remain regarding performance and browser support, especially

on mobile devices.

Things we need to further investigate:

• WebMIDI is not supported on any browser in iOS. Can MIDI input/output be handled natively in a

Hybrid app while other things like a sample synth is running in WebAudio? Can we get latency short

enough for monitoring while playing?

• Is WebAudio performance good enough on Tablets? How many simultaneous plain audio tracks can

be played? How many simultaneous tracks can be played with sample player? Do sample player tracks

have to be translated to plain audio files to get good enough performance?

• Microphone input is not possible in WebAudio on iOS. How can we best record using native

functions? Do we need direct interaction between the native container and the WebView or is it

enough to have the native container interact with the WebView via the cloud?

4.5 Hybrid cross platform tools

The number of web frameworks which can be used either alone or in combination with others to

produce Hybrid apps is overwhelming.

They can produce Hybrid apps, where all or part of the app is a Web View displaying content (HTML,

JavaScript, and CSS) loaded either locally from the app itself or from the web.

Some web frameworks we have looked at are: Interact.js, Ionic, jQuery Mobile, React and Sencha

Touch.

The two we found most interesting are listed below.

4.5.1 Apache Cordova / PhoneGap

Apache Cordova and it's commercial sibling PhoneGap Apache Cordova is a set of device APIs that

allow a mobile app developer to access native device functions such as the camera or accelerometer

from JavaScript. It can also be used to package apps in native containers for distribution via App

stores. With Apache Cordova / PhoneGap you usually implement a Web app as a thin native container

with a single Web View where all the user interaction happens. As an alternative you can mix a Web

View with native components.

4.5.2 Meteor

Meteor is a JavaScript app platform, offering a complete full-stack framework for delivering web and

mobile apps entirely in JavaScript. It has a number of great features like:

 DoReMIR Music Research AB Page 11 of 15

 Real-time. Real-time bidirectional communication using Web Sockets between the client and

the server

 Data on the Wire. Meteor doesn't send HTML over the network. The server sends data and

lets the client render it.

 One Language. Meteor lets you write both the client and the server parts of your application in

JavaScript.

 Database Everywhere. You can use the same methods to access your database from the client

or the server.

 Latency Compensation. On the client, Meteor prefetches data and simulates models to make it

look like server method calls return instantly.

 Full Stack Reactivity. In Meteor, realtime is the default. All layers, from database to template,

update themselves automatically when necessary. This means that synchronization between

multiple devices is built-in.

 User accounts and sessions. User accounts and sessions are available out-of-the-box.

 DoReMIR Music Research AB Page 12 of 15

5 Local vs Cloud functionality

Application functionality can be deployed locally in each client or centrally in the cloud. There are

pros and cons for each choice.

5.1 Why local?

 usually faster for the end user

 less load on cloud servers

5.2 Why cloud?

 more secure (harder to reverse engineer)

 easier to upgrade (all users use the same version - upgrade once for all users)

 no need to rewrite legacy code

5.3 What to deploy in the cloud

Our initial plan is to deploy the following components in the cloud.

 monophonic audio analysis

 polyphonic audio analysis

 DoReMIR Music Research AB Page 13 of 15

6 Look and feel

A native app usually tries to blend in by using the same type of UI Elements (menus, icons, buttons

etc) as the hosting operating system.

Web apps on the other hand stem from the rich flora of home pages, where individuality frequently

has been a goal. Therefore Web apps often have their own idiom when it comes to color and form.

Lately as Web apps due to new web technologies have been more capable, some more tool like apps

strive to mimic the UI Elements of the hosting operating system.

 DoReMIR Music Research AB Page 14 of 15

7 Table of functionality

This table maps the requirements from chapter 3 to the native frameworks from chapters 4.3.x and

Web and Hybrid technology respectively.

A
p

p
ce

le
ra

to
r

Q
t

R
ea

ct
 N

a
ti

v
e

U
n

it
y

X
a

m
a

ri
n

W
eb

H
y

b
ri

d

Audio and MIDI x1 x1 x1 x2 x1 x3 x1

Great User Interface x x x x4 x x x

Printing x x x x x x x

Sharing x5 x5 x5 x5 x5 x x

DAW Export x x x x x x x

Musical Intelligence x6 x6 x6 x6 x6 x6 x6

Offline support x x x x x - x7

Multiple users working in the same document x x x x x x8 x8

Current staff competence - - - - - x x

Making sure all users are on the same version x9 x9 x9 x9 x9 x10 x10

1 = can use the native capabilities of the platform

2 = no built-in midi support (but can probably be developed as a PlugIn)

3 = Support for Web Audio and Web MIDI depends on browser. Web Audio support exists in many

browsers while Web MIDI support only exists in a few. The most obvious shortcomings are that Web

MIDI and Microphone input is not supported on any iOS browsers. See the following two links.

Web Audio API: http://caniuse.com/#search=web%20audio

Web MIDI API: http://caniuse.com/#search=web%20midi

4 = Unity has great 2D and 3D graphic capabilities

5 = Needs some kind of web presence when sharing on Facebook etc

6 = Depending on feature it may be implemented locally or in the cloud. If implemented locally the

implementation may vary.

7 = Web technology is by design not offline, but a hybrid app has access to a native container where it

can be implemented.

8 = Using Meteor as we plan to do will greatly simplify synchronization

9 = Forced upgrade to a new version can be built but needs user interaction

10 = By design, since client code is loaded from the server every time the app is run. Not available in

offline mode.

 DoReMIR Music Research AB Page 15 of 15

8 Conclusion

In September 2012, Facebook's Mark Zuckerberg said:

- "The biggest mistake we’ve made as a company is betting on HTML5 over native."

This related to Facebook's unsuccessful mobile strategy where clients were made using HTML5.

Since then the speedup of hardware is manifold and the progress in Web technologies has been

extremely fast.

There are also a number of strong reasons to use cross platform Web technology instead of cross

platform Native technology:

 We know Web technology and can therefore get a flying start

 We can reuse more code

 It's easier to deploy updates

 Developing back- and front-end using the same language is a great thing

A conservative person might say -"It can't be done, look at Facebook.", but products from companies

like SoundTrap and Hansoft and the showcase http://midwinterlightup.com and others at

http://audiocrawl.co show something very promising, regarding user experience and WebAudio.

Our take (and hope) is that Web/Hybrid technology is ready for prime time in products like the ones

we are aiming at!

The plan is to develop Web apps for Mac OS X and Windows and Hybrid apps for mobile devices.

Two technologies we believe in are Apache Cordova / PhoneGap (see chapter 4.5.1) enabling us to

access native functionality from Web apps on mobile devices, and Meteor which gives us a platform

with a lot of useful and leading edge functionality out-of-the-box (see chapter 4.5.2).

Our next step is to start implementing a concept app where we use Apache Cordova / PhoneGap and

Meteor. During this quest we'll find out if we are on the right track!

